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1 SURVEY OF THE NUMERICAL SOLUTION TECHNIQUES FOR VARIATIONAL 
1 PROBLEW I N  THE DYNAMICS OF FLIGHT "L2 

V.K.Isayev and V.V.Sonin 

3 39sl 
Indirect  methods of numerical solution of var ia t ional  
problems in rocket f l i g h t  are reviewed, covering a l l  
Russian l i t e r a t u r e  data. Local methods of continuous 
search a re  discussed, including a modified version of 
Newton's method, var iants  of  the steepest descent 
method, solutions of variational problems with a f ree  
r igh t  end of the trajectory. Comparisons of the  various 
methods are given, including t h e  example of asymmetric 
f l i g h t  t o  Mars wi th  return, resul t ing i n  a 20% advantage 
over symetr ica l  f l ight .  
a t  which the f l i g h t  will be accomplished a t  maximum 
thrust .  

A minimum value N, i n  i s  derived 

The methods of numericail solution of var ia t ional  problems a re  divided in to  
ind i rec t  and direct .  In  the indirect  methods, t h e  boundary-value problems are  
solved f o r  d i f f e ren t i a l  equations describing the optimal motion of the object 
involved. The purpose of the  indirect  methods i s  the gradual improvement of a 
cer ta in  set of parameters (def ic ient  boundary conditions of the boundary-value 
problem). The d i r ec t  methods consist  in optimizing the  functionals by suc- 
cessive improvement of the control functions. 

The purpose of the present paper is mainly t o  survey certain indirect  
The review covers primarily material published i n  the  USSR. methods. 

O f  the loca l  methods of continuous search we consider Newton's method with 
modifications proposed by u s  (including considerations on the correlation of 
the  modified Newton method with the  gradient methods), a version of the method 
of steepest  descent, methods of solving var ia t ional  problems with a f r ee  r igh t  
end of the t ra jectory,  and methods f o r  l i n e a r  systems. 
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4. Connection between the modified Newton method and the method of steepest  
descent. 

5 .  The method of steepest descent. 
6. Methods of solving special problems. 
7. Linear systems. 

11. Direct methods. 

INTRODUCTION 

The optimum programing problem ar i ses  each time an attempt i s  made t o  
construct a sc ien t i f ica l ly  jus t i f ied  system o r  t o  determine the 
b i l i t i e s  of existing systems. 
programs f o r  the control variables, t h e  specif ic  program which will yield the 
maximum (or  minimum) of some quantity a t  the end of the control process and 
which, a t  the same t i m e ,  will sa t i s fy  the prescribed boundary conditions. 

possi- 
The problem i s  t o  single out, from a l l  possible 

The methods of numerical solution of var ia t ional  problems are divided in to  
ind i rec t  and direct .  The indirect  methods consist i n  the solution of t h e  
boundary problems f o r  differential. equations describing the optimum motion of 
the object involved. The d i r ec t  methods consist of methods of maximizing (or  
minimizing) functionals. While t h e  purpose of the indirect  methods consists i n  
the gradual improvement of some s e t  of parameters (deficient i n i t i a l  conditions 
of the boundary-value problem), the purpose of the d i r ec t  methods i s  the suc- 
cessive improvement of the control functions, which means t h a t  d i r ec t  methods 
belong t o  the class  of functional methods. 

fi 

L e t  t h e  specified dynamic system be described by the  equations , 
. .  

or,  i n  vector form: 

.. 
Required: t o  find t h e  equation u = (ul, ..., u r )  which, i n  the time T, will 

transform the system (1) from i t s  prescribed i n i t i a l  posit ion 

t o  a prescribed f i n a l  posit ion such t h a t  a cer ta in  functional S assumes i t s  
maximum (or minimum) value under res t r ic t ions  imposed on the control 

Condition ( 3 )  makes t h e  problem nonclassical. The general apparatus f o r  ,& 
solution of such a problem i s  the principle of the maximum (Bib l .1 ,  2). 
modifications of t h e  c lass ica l  methods (Bib1.3 - 5 )  which are  useful i n  solving 

Special 
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certain problems of the  form of  eq.(l) o r  eq.(3) should a l so  be mentioned. 
a branch of the nonclassical calculus of  variations,  the method of dynamic 
programming (Bibl.6 - 7) occupies a special position in t h i s  respect. 

As 

The 
indirect  
USSR. 

object of the present work i s  a general survey, primarily of cer ta in  
methods. The review w i l l  cover mainly materials published i n  the 

I. METHODS OF SOLVING VARIATIONAL PROBLEMS OF FLIGHT 
DYNAMICS REDUCED TO BOUNDARY PROBLEMS 

1. General Outline of Indirect  Methods 

By means of the maximum principle, the var ia t ional  problem [eqs.(l)-(3)] 
i s  reduced t o  a system of the order 2n 

2 H  ( i t  4, ...) *) a QP; 3 pi=-- ? X i  ( 4 )  

* 2H a;= - a;= - V i l  3 
pi=-- " 9  I QP; ? X i  

( i t  4, ...) *) a 
( 4 )  

where 

I n  eqs.(4) the control 2 i s  replaced by the fumt icn  u = u(x, p, t )  obtiined 
from the condition t h a t  the function H = H(u) i s  t o  be minimum (or  maximum), 
with consideration of the condition (3) .  

If eqs.(4) a r e  integrated, the  boundary-value problem reduces t o  a system 
of algebraic o r  transcendental equations. I f  t h i s  i s  not the  case, the  solu- 
t i on  of the boundary-value problem reduces t o  a successive solution of Cauchy 
problems, and the problem w i l l  consist i n  organizing t h e  selection of the cor- 0 
responding lacking i n i t i a l  conditions. 

I n  the a rb i t ra ry  case, it i s  required t o  solve the problem of finding the 
zeros of the  system of equation@: 

The res t r ic t ion  (3)  i s  automatically taken in to  account i n  calculating 
eq. (6) by means of eqs. (4). We note tha t ,  w i th  t h i s  approach, the problem with 

I n  the  problem (1) - (3) ,  i n  t h e  general case, y = (yl, ..., y,) = 
0 = (Po,, ... 9 P,). 

3 



. 

fixed T and the problem with unfixed T are both'solved in the  same manner 
(Bibl. 8 ) . 

We w i l l  characterize the  i t e r a t ive  process by the value of t h e  function 

h 

where aik a re  the constant coefficients of a posit ive quadratic form of determi- 
nate sign. Instead of eq.(7) we may use: 

h 

where $ i s  a continuous, monotonous, continuously different iable  function @ such 
tha t  $ ;r 0, and such t h a t  it vanishes only i f  @ vanishes. 

In accordance with another paper (Bibl.9), the  methods of finding the ex- 
tremum (here,the Zero) of the  function of t h e  residue @ (which i s  sometimes 
called the  output o r  e s t i aa t e  function) may conveniently be classi f ied in to  
three groups. 

The first group includes the  so-called methods of blind search (random /8 
sampling, homeostat principle, scanning), which do not use information accumu- 
la ted  during the  preceding stage. 

The second group includes the methods of continuous search [termed "local 
search" by Geltfand (Bibl.9)]. These methods consist essent ia l ly  i n  t h e  con- 
tinuous motion of the working point in parameter space i n  some selected manner 
d i r e c t l y  t o  the  point at  which @ reaches a minimum value. 
point a new direction i s  determined, along which the  descent i s  again continued 
t o  the  loca l  minimum of @, and so on. If t h e  search i s  conducted i n  direct ions 
which, once and f o r  all, are fixed in a def in i te  order, then we have an analog 
of the  Gauss-Seidel method. I n  the method of steepest descent (Bibl.10, Chap- 
t e r  111) and the  gradient method, the direct ion of search i s  determined from 
the direct ion of the  gradient @. 
resemble each other. It has been noted (Bibl.11, 12 )  t h a t  these two methods 
permit consideration of any res t r ic t ions  on the phase coordinates; f o r  great 
deviations from the minimum it i s  preferable t o  use the method of steepest de- 
scent, while the gradient method i s  be t te r  f o r  s m a l l  deviations. One feature 
of the var ia t ional  problems of rocket dynamics i s  tha t ,  when the system ( 4 )  is  
put i n t o  dimensionless form, the process of solution of the problem may i n  s o m e  
cases be  considered completed when the working point falls within t h e  region 
@ < 1(T8 - l (Te .  
(Bibl.10, Chapter N )  which converges more rapidly than the gradient method i n  
the  neighborhood of small  @. The methods of t h i s  group may be made still  more 
e f fec t ive  by t h e  introduction of a memory, so as t o  determine the direct ion of 

From the  obtained 

The schemes f o r  the l a t te r  two methods closely 

The most effect ive method i n  t h i s  case i s  t h a t  of Newton 
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. 
search with allowance f o r  the  points of the  provisional minimum of the  func- 
t i on  @ found i n  the preceding stages of t he  i terat ion.  Another paper (Bibl.13) 
describes one algorithm of this kind for a nonlocal method of continuous search. 
According t o  t h i s  algorithm, the working point moves successively i n  substanti- 
a l l y  different  (independent) directions. 

There i s  a special  group, consisting of nonlocal search methods (Bibl.9) 

On "cyclization" of the working point, motion takes 
i n  which the process of displacement of the  working point i n  parameter space 
ceases t o  be continuous. 
place along the bottom of a "ravine", Le., along the s t ra ight  l i n e  connecting 
two points of the re la t ive  extremum, found by the method of coarse descent from 
two d i f fe ren t  points in parameter space. 
considerably greater  than tha t  of the  gradient step. 
a coarse descent i s  again performed, the direct ion of the ravine i s  refined, 
and a ravine step i s  again taken. In  some cases, the '?ravine method" i s  ef- 
fect ive and permits investigation of a broad region of small values of the 
function of the residue @. 

The length of the ravine step i s  taken 
From the point so found, 

2. The Newton Method 

We have already noted tha t  the Newton method i s  
methods f o r  the numerical solution of boundary-value 
t i o n  of t ha t  method proposed by us  has proved highly 

one of the  most effect ive 
problems. The modifica- 
useful (Bibl.8, 14).  One 

of the  possible causes of divergence o f  the  method i s ' t h a t  a t  some stages of /10 
t he  i t e r a t ion  the value of a single step, in the region of la rge  values of (b, 
i s  too great. T h i s  i s  because the Newton method, l i k e  any l oca l  method, u t i -  
l i z e s  only the information on the  i n i t i a l  point of the i terat ion.  
of t h i s  information, which gives essent ia l ly  an idea of the function i n  a narrow 
neighbcrhecd of the i n i t i a l  point, the posit ion of the zero i s  predicted and 
the  next step i s  then taken in the direction so found. 

On the bas i s  

The accuracy of the Taylor expansion, however, decreases with increasing 
distance from the i n i t i a l  point. 

In  some cases, the following method may help to overcome contradictions of 
t h i s  kind. Of 
course, this will not make it possible t o  get along altogether without addi- 
t i ona l  information on the course of  the process, although the  amount of such 
information should be kept t o  a minimum insofar  as possible. 

We will introduce a correction a t  certain stages of the search. 

We wi l l  introduce t h e  correction depending on the dis t r ibut ion of the  
value of the residue i n  the boundary conditions at  d iscre te  points  of  the ray 
connecting two successive points of the i terat ion.  
(residue ) function: 

Consider the '?gross error" 

5 
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where k i s  the number of the i te ra t ion  step; CY i s  a parameter, 0 5 CY s 1 in- 
creasing l inear ly  along the length of the ray [yk-l, s,]; % is the  length of 
the k-th step of the i terat ion.  A t  CY = 0 and CY = 1, eq,(9) gives t h e  residue 
f o r  t h e  (k-1)th and the k-th step, respectively: @(k, 0) = @(k-1, 1) and @(k,l). 

scheme: @(k, 0) s @(k, l), we supplement the  classical  scheme by calculating t h e  
value of the residue a t  one o r  several. points of the ray [ yk-l , y, 1. The choice 
of the number of N, and the  disposition of cui ( j  = 1, . .. , N, ) optimum fo r  con- 
vergence, i s  a complex and unsolved problem. 

On the  appearance,at the k-th step, of signs of divergence of t h e  Newton /11 

The following method has proved in  practice t o  be ra ther  universal. Se- 

I I we calculate t h e  residue @(k, -) i n  the  center of the ray. l ec t ing  CY = 7,  2 
-I I 

I f  @(k, 0), @(k, -) and P(k, 1) form a downwardly convex function of a dis- 

Crete argument, then we can lay, through three points, t h e  parabola approxi- 
mating 8(k, CY) and f ind the point of the minimum C$ of the  Lagrange interpola- 
t i on  polynomial : 

2 

If the condition o f  downward convexity i s  not sa t i s f ied  o r  i f  a++ s 0, t h e  
above-described operations are  repeated, but this time on on ly  half of the  in i -  

t i a l  ray, 0 e CY s ?, etc. 1 
h 

Approximation of a parabola i s  obviously not t h e  only method of performing 
a correction depending on the results of a %robingn of the '%-keriority of the  
step". The following elementary algorithm has also proved useful i n  practice: 

1) A l tclassical  step" i s  taken; 2) @(k, 0) and @(k, 1) are calculated; 
3 )  i f  t he  condition @(k, 1) < @(k, 0) i s  satisfied, the c lass ica l  scheme i s  

/12 

I retained; i f  it i s  not satisfied, @(k, T )  is calculated; 4 )  i f  the condition 

I @(k, T )  < @(k, 0) i s  satisfied, then the Newton scheme i s  again u t i l i zed ;  i f  

it i s  not sat isf ied,  then @(k, -) i s  found, and so on. 1 
4 

This modification of the Newton method has been developed by us  i n  solving 
a number of problems of rocket dynamics since 1961. 
boundary-value problems of t h e  10th to  lL th  order with as many as six unknown 
parameters (Bib1.14, 15). 
method performed a t  the All-Union USSR Academy of Sciences by V,N.Lebedev and 
his associates  [ cf., f o r  instance, (Bibl.lb)]. 

Other papers (Bibl.15, 17) a r e  devoted t o  the computational aspects of 

6 

We considered two-point 

Satisfactory results were obtained in a check on t h i s  
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. 
Newtonts method. 
solution of the Cauchy problem on the convergence of the i t e r a t ion  process, and 
another author (Bibl.18) describes application of t h e  in tegra ls  of the  equa- 
t i ons  of optimum motion t o  an accuracy check, e f fec t  of the modification of 
Newtonts algorithms on convergence far from the neighborhood of the solution, 
considerations on the limits of appl icabi l i ty  of the Kantorovich modification 
t o  this problem, etc..Stensil (Bibl.17) in particular,  discusses a highly in- 
te res t ing  method of correcting the Jacobi matrices f o r  the  values of the func- 
t i on  6. 

One author (Bibl.15) mentions the e f fec t  of the  accuracy of 

3 .  B r i e f  Survey of the Results Obtained by the  Newton Method /12 
Newtonts method has proved effective f o r  the numerical solution of a wide 

range of problems in rocket dynamics: i n  calculating the program f o r  the angle 
of t h rus t  orientation of a single-stage rocket with maximum velocity a t  apogee 
(Bibl.14); i n  the search f o r  optimum programs of variation of power, exhaust 
velocity, and thrus t  orientation o f  a space vehicle on an in t e ro rb i t a l  f l i g h t  
t o  Mars with limited power 0 ?; N ?; N,,, and limited var ia t ional  range of ex- 
haust veloci ty  C O f  the r e s u l t s  obtained i n  one 
of these papers i)Bibl.ll+) we par t icular ly  note (Fig.1) the evaluation of the 
influence of r e s t r i c t ions  of  the  exhaust velocity on the power consumption 
during an in te rorb i ta l  f l i g h t  t o  Mars l a s t i n g  0.5 year (the heliocentric angle 
of f l i g h t  being n). 
with return (Earth-Mars-Earth, t o t a l  angle of f l i g h t  2n, duration 1 year), 

giving a 20% advantage, i n  the  sense of  r a2dt over symmetrical f l i g h t  (on 

which the  heliocentric angle and time of f l i g h t  a re  the same, going and return- 

5 C < C,,, (Bibl.14, 15).  

That paper a l so  presents an example of asymmetric f l i g h t  

f 

0 

ing ) . 
We present some results of a numerical study of the e f f ec t  of t h e  para- 

, [where M(0) i s  the i n i t i a l  mass] on the  f i n a l  mass a t  the - N,,, meter N = 

prescribed values C D i n  = 20 km/sec, C,,, = 100 lan/sec, with respect t o  the 

in tu i t i ve ly  c lear  t h a t  there  exists a minimum value N D I n  a t  which the fJight 
will be accomplished a t  maximum thrust  [ c ( t  ) = C, l n  , 0 < t 5 TI. For N < N D i n  
there  i s  no solution satisfying the boundary conciitions (the boundarg i s  arbi- 
t r a r i l y  shown by the broken line in Fig.2). As N increases, a l l  the types of 
optimum regimes described i n  another japer  (Bibl.14) occur on the t ra jector ies .  
Finally, beginning a t  some value of W-, the  motion is  accomplished without regu- 
l a t i o n  of the exhaust velocity (C = C B a x )  and the length of the passive phase 
increazes (Fig.2). Figure 3 shows the dependence of the f i n a l  mass on the para- 
meter N, under the same restr ic t ions.  
controllable system ( C , i n  = 0, C,,, = m), the  problem of optimization i s  re- 
solved in to  two independent problems: 

the  minimum condition S = rfa2dt (the t ra jec tory  part of the  problem); 2) t o  

W O )  

charac te r i s t ics  of an optimal Earth-to-Mars f l i g h t  (2 = 0.5 year). It i s  /14 

It i s  well known tha t  f o r  an ideal ly  

1) t o  find the  optimum trajectory from 

0 



. 
f ind t h e  program of mass consumption m ( t  ) -= % : (1 + m, J' a2d5) and opti- 

N 
mization of the weight ra t ios:  f i n a l  mass t o  parameter K, from the value found 
f o r  S (the weight par t  of t h e  problem). 
mass m(T) f o r  an idea l  system [determined by the  formulas given i n  another paper 
(Bibl.18, 19)] and those found by the  numerical method f o r  a f l i g h t  with the  
above characterist ics.  The existence of constraints (C, 11, C,,,) leading t o  
t h e  appearance of passive phases will, in the general case, obviously make it 
impossible t o  separate the problem of optimization in to  tm-independent parts. 
Thus, i n  the general case, instead of calculating m(T) and N from the final 

re la t ions  as a function of 

shown i n  Fig.3. 

Figure 3 gives the values of the f i n a l  

/15 
a2dt, use should be made of re la t ions of the  type 

' 0  

Newtonfs method has been used i n  solving problems of the launching of a 
space vehicle f r o m  a c i rcu lar  o rb i t  (Bibl.20), of the  f l i g h t  between two points 
i n  a central  f i e l d  (Bibl.21), and of a f l i g h t  between heliocentric o rb i t s  by 
t h e  a id  of a so la r  sail (Bib1.22). 

The application of Newton's method in the work of American spec ia l i s t s  i s  
described i n  Sect.2l of the  review by Grodzovskiy e t  a1 (Bib1.23). 

4. On t he  Connection between Newtonfs Method and the 
Method of Steepest Descent 

Prac t ica l  work has shown tha t  the "cyclingt1 of the i te ra t ion  process some- 
times involves a tendency of @ t o  vanish, which i s  equivalent t o  an interrup- 
t i on  of the descent (and t o  a decrease of the restdce). 

Let us rewrite eqs.(7) and ( 8 )  in the  following form: 

-- and 

where qs i s  a r o w  vector and IlAll the  symmetric matrix of a positive-determinate 
quadratic form; Q is  a column vector. 

L e t  u s  give the vector y the increment 4y. Then, the function @ w i l l  take 
the  increment 

. 

where &y i s  a column vector of t h e  increment, and 

8 



lFll= . . .  . .  . . . .  

If there exists a vector \ satisfying the  equation 

then, obviously, the equation 

will be sa t i s f ied  f o r  any a. 

Substi tuting eq. (14) into eq. (ll), we obtain 

S h i l a  rl y , 
I 

It follows from eqs.(15) and (16) tha t ,  f o r  suff ic ient ly  small a, the in- 
crements and A$ will be defined: 

and 

By v i r tue  of the posit ive determinacy of a), of the conditions imposed on $, 
and of the conditions of existence of a solution of eqs.(l3) o r  (l,!+), 



This proves that ,  a t  each s tep o f t h e  i te ra t ion ,  there ex i s t s  an ap, 0 .< 
-e cy s 1, such tha t  the sequence of levels  of the  functions of residue arranged 
i n  order of the rimer of the i te ra t ion  step decreases monotonically: 

where 

Y k+' 
The geometrical interpretat ion of conditions (171, (181, and (191, o r  

i s  t h a t  the  vector 7, a t  every point [except t ha t  of the solution (6)3 has a 
posi t ive direct ion on the direct ion of decline of the residue function, i.e., 
i n  other wonis, t h a t  7 i s  nowhere tangent t o  the surface of the leve l  @ o r  JI 

but  makes an angle less than -?- w i t h  t he  direct ion of most rapid decline @. 

relevant calculations have been absolutely accurate. I n  rea l i ty ,  it i s  precise- 
l y  this t ha t  carnot be assaredl f o r  numerical calculations on a d i g i t a l  computer, 

2 
The la t te r  considerations have a l l  been based on the  assumption t h a t  the  /18 

Owing t o  e r ro r s  in computation, the angle between the  direct ions of -grad @ 

n and the vector 7 may reach o r  exceed -. 
2 

quence @(yk) ceases t o  be monotonic in k, so t ha t  a t  some k3 t h e r e  i s  a %on- 
traction" of the working point t o  i t s  i n i t i a l  position: 

If t h i s  takes place, then the se- 

I n  this case, i n  using the algorithms of the modified Newton's method 
(Bib l .8 ,  U+), we can reconmend: 
accuracy of the solution of the Cauchy problem f o r  determining t h e  vector cp, 
and the  accuracy of computation of the Jacobi matrix); b )  changing t o  the  method 
of steepest  descent, Le., t o  determine the increment dy not by the formula 
dy = cu'q but ra ther  by the formula dy - w grad @, o r  dy = 
for the  value of & corresponding to  t h i s  choice. 

Since the  i t e r a t ion  i s  performed from the point yk, which i s  not a root of 

a )  increasing the accuracy of computation ( the 

grad $, searching 

Up t o  now, we s tar ted out from the existence of a solution Tk f o r  eqs,(13). 

10 



eq.(6), the case when eq.(13) is an inhomogeneous system i s  of i n t e re s t  here. 
The condition of unsolvability of such a system i s  tha t  the  Jacobi matrix lIFl\ 
sha l l  vanish: 

I n  the  general case, eq.(21) i s  the e uation of an (m-l)-dimensional surface 
i n  an m-dimensional space(yr, ..., ym 7 . The following assertion i s  valid: The 
vector of grad @ (or of grad 4 )  vanishes at the point y, not being a solution 
of eq.(6), i f  and only i f  y belongs t o  the  surface (21). 

/19 

From eqs.(l7) and (18) we have 

and 

By v i r tue  of the condition $l > 0, grad @ and grad $ vanish simultaneously, 
so that we will confine ourselves t o  a consideration of the vector of grad @. 
By hypothesis, % does not vanish, and l!All i s  the matrix of the positive-deter- 
&ate quadratic form f o r  which t h e  Sylvester c r i te r ion  i s  valid,  whence, i n  
par t icular ,  it follows t h a t  i t s  determinant does not vanish, i.e., t h a t  the  
system of linear equations 

where O* is  a zero row vector, has only the  t r i v i a l  solution Q.. = O*. 

vector 
By v i r tue  of the contradiction with the condition we conclude t h a t  the 

- .  

We have, further:  

rk. iF!l-O,. 
Since p i s  a nonzero vector, eq. (24) can mean only  t ha t  IF1 = 0, which was t o  
be proved. 

The assertion j u s t  obtained i s  a necessary (but not a suf f ic ien t )  con- /ao 
d i t ion  of the vanishing of grad @. 
of a surface (21) on which grad @ vanishes a t  a single point. 

Thus, it is  possible t o  adduce t h e  example 

This resu l t  permits posing a new problem: tha t  of the existence (and search 
f o r )  a cer ta in  function $, optimum for an assigned space Y [Le., i n  the 



language of Gel'fand (Bibl.9), t h a t  of improving t h e  organization of the func- 
t i o n  $1. I n  any case, on the bas i s  of the  result obtained, we can hope t o  in- 
troduce several functions S1, ..., $,, such tha t  the points on these, where 
grad 
a t  which G1 = ... = 
( fo r  example, qual i ta t ive correspondence, in t h e  sense of change of l eve l  of 
each of the residues when the  working point moves i n  the parameter space). 

= 0, ..., grad = 0, a re  assumed not t o  coincide except f o r  the  point 
This problem and a l l  i t s  aspects remain unsolved = 0. 

A comparative analysis of Newton's method and t h e  method of steepest  de- 
scent, together with considerations on t h e i r  use i n  the problem of determining 
the parameters of the t ra jectory frommeasurement data, will be found elsewhere 
(Bibl.24). 

5. The Method of Steepest Descent 

While Newton's method is  based on the solution of the  system (13), the 

Q: reduces t o  one of the methods of integrating the system of ordinary 

method of steepest descent leading t o  the  decrease of the  function $I - 
= 

d i f f e ren t i a l  equations (Bibl.10, 24 - 27) 
$1 1 

where t h e  variable S is  the p a r a s t e r  d o n g  the curve of descent LI t h e  n- 
1, ..., y,] [so t h a t  t o  each S there  corresponds yi = 

= y,(S), i = 1, ..., m jY with initial data corresponding t o  the zero-th approxi- 
dimensional space Y = 

mation of the variables y,. Effective var iants  of the method of steepest  de- 
scent, developed i n  1957, are discussed i n  another paper (Bibl.25, 26) i n  t h e i r  
application t o  the problem of working up the  astronomical observations of the 
first a r t i f i c i a l  s a t e l l i t e s ,  later generalized t o  the case of problem-solving 
in determining the o rb i t s  of spacecraft f lying t o  the  moon o r  the planets of 
the so la r  system. 
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A similar method was proposed by Gavurin (Bib1.27). 

A variant  of the method of steepest descent (Bib1.25 - 27), likewise de- 
signed t o  overcome the computational d i f f i c u l t i e s  connected with the complex 
r e l i e f  of the h c t i o n  @(yl, . . . , y, ) and with the strong inhomogeneity of the 
slope of the descent fo r  the  individual variables, i s  based on the following 
transformation of the variables yi t o  new variables ai : 

The equations of motion on t h e  gradient l i n e s  (25) i n  the  new variables 

1 2  

are grea t ly  simplified, and take the form: 



The solution of eq.(27) i s  obtained i n  the  form of 

Thus, motion i n  the  subspace of the new variables  (as which we se lec t  t he  
components of t he  function of t o t a l  residue (b) proceeds along the s t r a igh t  
l i n e s  (a), i.e., i n  a cer ta in  sense most "rapidly" toward t h e  solution sought 
q~ = 0. The ac tua l  search f o r  t he  initial variables i s  performed by the  aid of 
the system (27), which may be transformed in to  the  following form: 

where 

Consequently, this variant  of the steepest  descent reduces t o  the  integra- 

t i on  of a system of the form of eqs.(27) over t he  in te rva l  0 < s < ,/@. The 
method i s  readi ly  generalized t o  the  case when the  nunker of equations cpi = 0 
exceeds the  n u h e r  of unknown parameters y i ,  which occurs i n  the  s t a t i s t i c a l  
work-up of an excess number of measurements. 

6. Methods of Solvina Special Problems /23 
The special  problems include the extensive prac t ica l  c lass  of problems 

with a free r igh t  end of t he  t ra jectory (Bib1.28, 29). 
generali ty,  l e t  u s  consider the problem with the  fixed time T ( in  a problem 
with free time, there i s  one condition t h a t  determines the  end of the  process, 
and all t he  procedure t o  be described below may be applied without trouble t o  
t h i s  case). 

Without l imi ta t ion  of 

L e t  u s  describe the  algorithm (Bib1.28): 
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1) Assign as first approximation ( f o r  instance, from physical considera- 
t i ons )  a cer ta in  allowable control u ( l ) ( t ) ,  0 s t s T. 
control u ( l ) ( t )  f o r  u i n  t h e  system ( la) ,  we in tegra te  this system f o r  the 
i n i t i a l  conditions (2)  over t he  interval  [0, TI, and denote the  solution SO ob- 
tained by x(l) ( t ) .  3 )  Substi tuting u( l )  ( t )  and x(l) ( t)  i n t o  the  second pa r t  of 
the  system , (4) :  

2)  Subst i tut ing the 

we i n t eg ra t e  eqs.(31) "from r igh t  t o  l e f t "  (from T t o  0) under the initial 
conditions (2)  

where C, are coeff ic ients  i n  t h e  functional S = C,xi (T)  of the Mayer problem. 
i =1 

/24 Let us denote t h e  resul tant  solution by p ( l ) ( t ) .  

t i on  of u and t. 
u( 2, (t ) from t h e  maximum principle  : 

4 )  Subst i tut ing x(l) ( t ) ,  p ( l )  ( t )  i n t o  eq. ( 6 ) ,  we then express H as a func- 
We now determine the next approximation f o r  t he  control 

5 )  U s i n g d 2 )  ( t ) ,  we f ind  successively x(') ( t ) ,  p(2)  ( t ) ,  9t.c. If t h e  pro- 
cess of successive approximations i s  convergent, we continue it u n t i l  the  suc- 
cessive approximations d i f f e r  by no more than the allowable accuracy l i m i t .  

The abovedescribed algorithm i s  computationally simple, i.e., a t  each s tep 
it reduces t o  the solution of two Cauchy problems: "from l e f t  t o  right" f o r  
the  system (1) and "from r igh t  t o  left '?  f o r  the system (31). 

For the  case of linear systems in  which f = A(t)x + b( t )u ,  application of 
t h i s  algorithm gives an exact solution i n  the  second approximation ( the exact 
values of  the  conjugate var iables  and t he  optimum control being determined i n  
the  first approxination, and the  coordinates i n  t h e  second). 

Krylov (Bib1.28) a l so  discusses using the method on a d i g i t a l  computer, 
with spec ia l  reference t o  the  econoq of the  machine memory. As an i l l u s t r a -  
t i o n  of the  appl icat ion of the method, t h e  authors consider the  model problem 
of programming t h e  angle of a t tack  and the choice of one of two d i sc re t e  values 
of t h e  charac te r i s t ic  value during the f l i g h t  of a material point t o  maximum 
range through a r e s i s t i ng  medium. 

The problem of the f l i g h t  of a vehicle with an engine t o  maximUm range /25 
i n  an atmosphere has been reduced (Bibl.29) t o  the problem wi th  a free r igh t  



end of the trajectory.  Under cer ta in  assumptions, the  value of the vector p(T) 
i s  completely determined, so tha t  the values of the  phase coordinates a t  the  
time t - T are the unknown parameters. 
f o r  these on the bas i s  of Newtonts method, integrat ing the system ( 4 )  "from 
r ight  t o  left". 

The above author organizes the search 

7. Linear Systems 

The optimum processes of f l i g h t  dynamics are described by essent ia l ly  non- 
l i nea r  d i f f e ren t i a l  equations. Nevertheless, we should l i k e  here t o  c a l l  the 
readerts a t tent ion t o  one interest ing numerical method of solving problems of 
optimal control - a method which i n  its or iginal  form was  developed f o r  l i n e a r  
systems (Bibl.30, 31) and was subsequently generalized t o  other classes of prob- 
l e m s  (Bib1.32). 

This method reduces the problem of f inding the optimal control u ( t )  t ha t  
will minimize the  coordinate ~0 (T)  under the condition T(T) = xi, . . . , < ) = 
= x1 t o  the problem of finding a reference hyperplane t o  the  set M(T) of points 
of an (n+l)-dimensional space t o  which the system (1) can be transferred by the 
a id  of the allowable control u ( t ) ,  0 s t 5 T. Under the  assumption (Bibl.1) of 
l a s t r i c t  convexity of M(T)", t h e  assigned hyperplane t o  the se t  M(T) (the exist- 
ence of which follows from the maximum principle)  uniquely determines the con- 
t r o l  and thus also the point X(T) = {%(T), Z%(T)] of t he  (n+l)-dimensional 
space. To f ind the reference hyperplane t o  the s e t  M(T) a t  the point of inter- 
section of t h e  s e t  M(T) and t h e  s t ra ight  l i n e  x = xl, with t h e  &lest coordi- 
nate ~ 0 ,  a process of successive approximation has been proposed (Bib1.30-32). 
A feature  of t h i s  approach i s  tha t  the process of successive approximation t o  
t h e  i n i t i a l  hypersurface i s  monotonic (Bib1.32). 

N 

& 
N 

This approach may also be of in te res t  i n  connection with the conrpufxtlonzl 
procedure proposed by Bellman and Kalaba (Bib1.33), which reduces t h e  solution 
of the boundary-value problem for  a nonlinear s y s t e m  of  d i f fe ren t ia l  equations 
t o  the solution of the analogous problem f o r  a sequence of l i nea r  equations 
which, under cer ta in  assumptions, converge t o  the solution of the nonlinear 
system. 

11. DIRECT ME3XODS (27 

The d i r e c t  methods have been extensively discussed i n  numerous papers 
(Bibl.10, 23, 34), which give exhaustive bibliographical references t o  which 
t h e  reader i s  referred. 

Here we merely note the  main trends in the  development of methods of t h i s  
type: 

1. The method of t h e  functional of steepest  descent (BibLlO), employed i n  

the  problem of minimization of rTa2dt f o r  a f l i g h t  between heliocentric o r b i t s  
0 

15 



(Bib1.35) 

2. The gradient method (Bibl.34, 36 - 39). 

3. The R i t z  method (Bib1.24, 35). 
T 

0 
[ In  solving the  problem of the  minimum of  

t h e  efficiency of t h e  method of the  descent functional is substant ia l ly  greater  
(by one o r  two orders of magnitude) than that of the  R i t z  method, i n  which the  
coeff ic ients  a r e  determined by the  method of steepest  descent]. 

a’dt, Ivanov (Bib1.35) notes that 

4. The broken-lines method (Bibl.40) 

A review of these methods would be beyond the scope of t h i s  paper. 
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